Assessing the stability of reference candidate genes for qPCR reverse transcription gene expression analysis in Clostridium perfringens

[ad_1]

  • Shen, A., Edwards, AN, Sarker, MR, and Paredes-Sabja, D. Sporulation and germination in Clostridial pathogens. Microbiol. Spectrum. https://doi.org/10.1128/microbiolspec.GPP3-0017-2018 (2019).

    PubMed Google Scholar article

  • Uzal, FA et al. Towards an understanding of the role of Clostridium perfringens toxins in human and animal diseases. Future Microbiol. 9361–377 (2014).

    CAS PubMed Google Scholar Article

  • Rood, J.I. et al. Magnification of the Clostridium perfringens toxin-based typing scheme. Anaerobe 535–10 (2018).

    CAS PubMed Article PubMed Central Google Scholar

  • Ohtani, K. et al. Regulation of virulence genes by the agr system in Clostridium perfringens. J. Bacteriol. 1913919-3927 (2009).

    CAS PubMed Article PubMed Central Google Scholar

  • Chen, J. & McClane, BA Role of agr-like quorum sensing system in regulating toxin production by Clostridium perfringens type B strains CN1793 and CN1795. Infect. Immun. 803008–3017 (2012).

    CAS PubMed Article PubMed Central Google Scholar

  • Keyburn, Alabama et al. NetB, a new toxin associated with avian necrotic enteritis caused by Clostridium perfringens. PLOS Pathog. 4e26 (2008).

    PubMed Article PubMed Central Google Scholar

  • You, Q. et al. The agr-type quorum sensing system is required for the pathogenesis of necrotic enteritis caused by Clostridium perfringens in poultry. Infect. Immun. 85e00975-e1016 (2017).

    CAS PubMed Article PubMed Central Google Scholar

  • Bustin, S.A. et al. The MIQE Guidelines: Minimum Information for Publishing Quantitative Real-Time PCR Experiments. Clin. Chem. 55611–622 (2009).

    CAS PubMed Google Scholar Article

  • Hellemans, J. & Vandesompele, J. Selection of reliable reference genes for RT-qPCR analysis. Methods Mol. Biol. Clifton NJ 116019-26 (2014).

    CAS Google Scholar Article

  • Metcalf, D., Sharif, S. & Weese, JS Evaluation of candidate reference genes in Clostridium difficile for the normalization of gene expression. Anaerobe 16439–443 (2010).

    CAS PubMed Google Scholar Article

  • Liu, J., Tan, Y., Yang, X., Chen, X. & Li, F. Evaluation of Clostridium ljungdahlii DSM 13528 reference genes in gene expression studies by qRT-PCR. J. Biosci. Bioeng. 116460–464 (2013).

    CAS PubMed Google Scholar Article

  • Kirk, DG, Palonen, E., Korkeala, H. & Lindström, M. Evaluation of standardization reference genes for RT-qPCR analysis of spo0A and four sporulation factor sigma genes in Clostridium botulinum group I strain ATCC 3502. Anaerobe 2614-19 (2014).

    CAS PubMed Google Scholar Article

  • Vandesompele, J. et al. Precise normalization of real-time quantitative RT-PCR data by geometric mean of multiple internal control genes. Genome Biol. 3(7), 1–12 (2002).

    Google Scholar article

  • Andersen, CL, Jensen, JL & Ørntoft, TF Normalization of Real-Time Quantitative Reverse Transcription-PCR Data: A Model-Based Variance Estimation Approach to Identify Genes Suitable for Normalization, Applied to Datasets on bladder and colon cancer. Cancer Res. 645245–5250 (2004).

    CAS PubMed Google Scholar Article

  • Pfaffl, MW, Tichopad, A., Prgomet, C. & Neuvians, TP Determining stable housekeeping genes, differentially regulated target genes, and sample integrity: BestKeeper—Excel-based tool using pairwise correlations . Biotechnol. Lett. 26509–515 (2004).

    CAS PubMed Google Scholar Article

  • Xie, F., Xiao, P., Chen, D., Xu, L. & Zhang, B. miRDeepFinder: A miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol. Biol. https://doi.org/10.1007/s11103-012-9885-2 (2012).

    PubMed Google Scholar article

  • Abildgaard, L., Schramm, A., Rudi, K. & Højberg, O. Dynamics of plc gene transcription and α toxin production during the growth of Clostridium perfringens strains with contrast α toxin production. Veterinary. Microbiol. 139202-206 (2009).

    CAS PubMed Google Scholar Article

  • Saito, R., Talukdar, PK, Alanazi, SS & Sarker, MR RelA/DTD-mediated regulation of spore formation and toxin production by Clostridium perfringens strain SM101 type A. Microbiol. Lily. English 164835–847 (2018).

    CAS Google Scholar Article

  • Xiao, Y., van Hijum, SAFT, Abee, T. & Wells-Bennik, MHJ Genome-wide transcriptional profiling of Clostridium perfringens SM101 during sporulation extends the core of putative sporulation genes and genes determining spore properties and germination characteristics. PLOS ONE tene0127036 (2015).

    PubMed Article PubMed Central Google Scholar

  • Kawarizadeh, A., Tabatabaei, M., Hosseinzadeh, S., Farzaneh, M. & Pourmontaseri, M. The effects of probiotics Bacillus coagulans on the cytotoxicity and the expression of the alpha toxin gene of Clostridium perfringens type A. Anaerobe 5961–67 (2019).

    CAS PubMed Google Scholar Article

  • Rocha, DJP, Santos, CS & Pacheco, LGC Bacterial reference genes for gene expression studies by RT-qPCR: survey and analysis. Antonie Van Leeuwenhoek 108685–693 (2015).

    CAS PubMed Google Scholar Article

  • Untergasser, A. et al. Primer3—new features and interfaces. Nucleic Acids Res. 40e115 (2012).

    CAS PubMed Article PubMed Central Google Scholar

  • Koressaar, T. & Remm, M. Improvements and modifications to the Primer3 primer design program. Bioinformatics 231289-1291 (2007).

    CAS PubMed Google Scholar Article

  • Matsuda, K. et al. Implementation of a human faecal microbiota analysis system, based on quantitative reverse transcription-PCR targeting multicopy rRNA molecules. Appl. About. Microbiol. 751961-1969 (2009).

    Article ADS CAS PubMed PubMed Central Google Scholar

  • Kikuchi, E., Miyamoto, Y., Narushima, S. & Itoh, K. Design of species-specific primers to identify 13 species of Clostridium hosted in the human intestinal tract. Microbiol. Immunol. 46353–358 (2002).

    CAS PubMed Google Scholar Article

  • Silver, N., Best, S., Jiang, J. & Thein, SL Housekeeping gene selection for gene expression studies in human reticulocytes using real-time PCR. BMC Mol. Biol. seven33 (2006).

    PubMed Article PubMed Central Google Scholar

  • Hellemans, J., Mortier, G., De Paepe, A., Speleman, F. & Vandesompele, J. qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol. 8R19 (2007).

    PubMed Article PubMed Central Google Scholar

  • Möllby, R., Holme, T., Nord, CE, Smyth, CJ, and Wadström, T. Production of phospholipase C (alpha-toxin), hemolysins, and lethal toxins by Clostridium perfringens type A to D. J. Gen. Microbiol. 96137–144 (1976).

    PubMed Google Scholar article

  • Bullifent, HL et al. The level of expression of α-toxin by different strains of Clostridium perfringensi depends on differences in promoter structure and genetic background. Anaerobe 2365–371 (1996).

    CAS Google Scholar Article

  • Bullifent, HL, Moir, A. & Titball, RW The construction of a reporter system and its use for the investigation of Clostridium perfringens gene expression. Microbiol FEMS. Lett. 13199–105 (1995).

    CAS PubMed Google Scholar Article

  • Aviv, G. & Gal-Mor, O. Real-time reverse transcription PCR as a tool to study virulence gene regulation in bacterial pathogens. In Host-pathogen interaction methods and protocols (eds Medina, C. & López-Baena, FJ) 23–32 (Springer, 2018).

    Google Scholar Chapter

  • Gomes, A.E. I. et al. Selection and validation of reference genes for gene expression studies in Klebsiella pneumoniae using quantitative real-time reverse transcription PCR. Science. representing 89001 (2018).

    ADS PubMed Article PubMed Central Google Scholar

  • Reiter, L., Kolstø, A.-B. & Piehler, AP Reference genes for quantitative reverse-transcription PCR in Bacillus cereus group of strains throughout the bacterial life cycle. J. Microbiol. Methods 86210-217 (2011).

    CAS PubMed Google Scholar Article

  • Hiscox, TJ, Ohtani, K., Shimizu, T., Cheung, JK & Rood, JI Identification of a two-component signal transduction system that regulates maltose genes in Clostridium perfringens. Anaerobe 30199-204 (2014).

    CAS PubMed Google Scholar Article

  • VanGuilder, HD, Vrana, KE & Freeman, WM Twenty-five years of quantitative PCR for gene expression analysis. Biotechnics 44619–626 (2008).

    CAS PubMed Google Scholar Article

  • Heredia, NL, Labbé, RG & García-Alvarado, JS Alteration of sporulation, enterotoxin production and protein synthesis by Clostridium perfringens type A due to thermal shock. J. Food Prot. 611143–1147 (1998).

    CAS PubMed Google Scholar Article

  • [ad_2]
    Source link

    Comments are closed.